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Transfixing thin Kirschner wires (K-wires) are the key components of the Ilizarov fixator
regarding its axial stiffness, which affects the mechanobiological environment in which bone
is healed. Mechanically speaking, K-wires are slender beams that are axially tensioned, then
fixed and transversely loaded. The existing solutions to such a problem either do not
accommodate any axial loading prior to transverse loading, or do not account for the change
in the axial load (reaction) due to transverse loading. Their applicability is also limited vis-a-vis
applied loads and beam dimensions. This work seeks to address those problems by providing
a mathematical formulation for a pretensioned slender beam that accounts for the change in
the beam tension due to lateral loading. Central loading of a pretensioned beam was studied
and new polynomial equations have been derived, the roots of which yield the final tension for
a (i) long, slender and heavily loaded beam and (ii) relatively thicker beam subjected to a
lower load. Results were produced and discussed for the specific application of pretensioned
K-wires in circular (ring) external fixators in orthopaedics (such as Ilizarov’s), which were
checked (validated) via two- and three-dimensional finite-element analyses.
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1. INTRODUCTION

An Ilizarov device is a versatile orthopaedic external
fixation system with increasing applications in the
treatment of skeletal deformities and trauma, as well as
limb lengthening. It is believed that the usage of thin
(fine) tensioned Kirschner wires (K-wires) is the key to
its highly successful clinical applications (Fleming
et al. 1989; Aronson & Harp 1992; Calhoun et al.
1992; Kummer 1992; Golyakhovsky & Frankel 1993;
Podolsky & Chao 1993; Catangi et al. 1994; Aronson
1997; Bronson et al. 1998; Watson et al. 2000; Davidson
et al. 2003; Mullins et al. 2003; Renard et al. 2005; Board
et al. 2007). K-wires are smooth (non-threaded) stain-
less steel wires with uniform circular cross sections of
normally 1.5 or 1.8 mm diameter (Golyakhovsky &
Frankel 1993). They are drilled through the bone and
subsequently tensioned and fixed to rings or ring
segments, as illustrated in figure 1. K-wires are also
the main components vis-a-vis the axial stiffness of the
fixator (Podolsky & Chao 1993; Bronson et al. 1998)
that is believed to determine the biomechanical
environment for bone healing (Fleming et al. 1989;
Watson et al. 2007), which is clinically proven to affect
bone genesis (formation) and maturation (Chao et al.
1989; Aronson & Harp 1994; Claes et al. 1998; Wolf
et al. 1998). Ilizarov fixators have been subject to
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clinical and experimental studies, the results of which
have emphasized the significance of K-wires (Fleming
et al. 1989; Kummer 1992; Bronson et al. 1998; Watson
et al. 2000).

K-wires have been subjected to numerous experi-
mental and computational studies (Aronson & Harp
1992; Hillard et al. 1998; Davidson et al. 2003; Mullins
et al. 2003; Donga et al. 2005; Renard et al. 2005;
Watson et al. 2003 a,b, 2005; Zhang 2004 a,b). They have
also been investigated theoretically (Hillard et al. 1998;
Nikonovas & Harrison 2005; Zamani & Oyadiji 2008).
Nonetheless, the need for a mathematical solution that
can include both bending and tension in K-wires still
persists. Such a model should accommodate the initial
tension applied to the K-wires (i.e. pretension) as well as
the change in tension due to transverse loading.
Mechanically, K-wires can be considered as slender
beams subjected to transverse loading, after being
pretensioned axially and fixed to supports.

The existing solutions involving axial tension in the
beams are: (i) formulae for the calculation of the axial
tension developed solely due to transverse loading and
(ii) formulae and tables for transverse deflections of a
beam under simultaneous axial and transverse loads
(Young & Budynas 2002). The problem, however, with
the former solution (case (i)) is that it does not
accommodate any axial loading prior to transverse
loading (i.e. pretension), and the latter (case (ii)) does
not account for the change in the axial load due to

This journal is © 2008 The Royal Society
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Table 1. Notations.

v Poisson’s ratio (¥=0.3)

A cross-sectional area of the beam

c distance from the point of application of the load to left-hand support (figure 1a)
D ring diameter (in circular fixators)

d diameter of the beam or K-wire

E Young’s modulus of elasticity of the material

e total elongation of the beam (i.e. after both pretensioning and transverse loading)
€o elongation solely due to pretension

F pretension (pretensile force)

H horizontal reaction at the supports (i.e. axial force acting on the beam)

1 moment of inertia of the cross-sectional area of the beam about its neutral axis
J auxiliary parameter defined by equation (3.24)

k see equation (2.3)

L length (span) of the pretensioned beam or K-wire (i.e. distance between the supports)
L_, untensioned (free) length of the beam (i.e. prior to any loading)

M(z), M moment acting on the beam at position z

My moment at the left support of the fully fixed beam

P transverse (vertical) load

R4 vertical reaction at the left-hand support of the beam

T tension at each point along the beam

T position along the longitudinal axis of the beam (figure 1a,b)

Y, y(z) vertical (transverse) displacement of the point at position z along the beam
v,y (z) first derivative of y, with respect to z

Y’y () second derivative of y, with respect to =

Ymax maximum deflection in the K-wire (or beam)

z an arbitrary real number

transverse loading. The applicability of both existing
solutions is also limited in terms of applied loads and
beam dimensions (i.e. kL<12, where k= \/H/EI, in
which H is the axial load; EI the flexural rigidity; and L
the length of the beam). Considering the definition just
given, it is seen that kL can easily exceed 12 in real
(clinical) applications of K-wires in Ilizarov systems.
Thus, there is an outstanding mechanical problem con-
cerning tension and deflection of a pretensioned slender
beam in transverse loading.

Young & Budynas (2002) mentioned the complexity
that could arise in the calculation of the final tension,
even for a beam with no initial pretension as: ‘in
general, solving the resulting equation for axial load is
difficult owing to the presence of the hyperbolic
functions and the several powers of the load in the
equation. If the beam is long, slender and heavily
loaded, this will be necessary for good accuracy, but if
the deflections are small, the deflection curve can be
approximated with a sine or cosine curve’. In fact, in the
present work, the attempt to solve that problem for
the case of a long slender pretensioned beam under a
large centre load led to a simplification of the solution,
owing to a simple mathematical approximation.

In this paper, first a brief discussion of a beam under
simultaneous axial and transverse loading is given in
§2, and then in §3 the effect of the transverse loading on
axial tension in a beam is formulated for a centre load
leading to new polynomial equations for the final
tension. In §4, a brief description of the finite-element
(FE) modelling and analysis of the problem is given,
which were carried out as a part of this study to
accompany the analytical solutions provided in §3.
Section 5 presents the results yielded by applying the
derived equations to a specific case of pretensioned

J. R. Soc. Interface (2009)

K-wires in Ilizarov external fixators as illustrated in
figure 1, which are compared with the results from FE
analyses (FEAs) of the problem as described in §4.

2. A BEAM UNDER SIMULTANEOUS AXIAL
AND TRANSVERSE LOADING

A beam under simultaneous action of an axial tension
(H) and a transverse load (P) is shown in figure 2a,
where the shear effect has been ignored due to the
assumption that the beam is slender. In figure 2q,b, y is
the vertical deflection at a point on the beam with
horizontal position z. The key to including the effect of
the axial load in this formulation is the integration
of the moment caused by the axial force (H) acting
at each point on the beam due to its deflection (y) into
the moment equation, hence the term Hy in equation
(2.1) (figure 2b).

In figure 2q, the bending moment equation combined
with the classical beam theory assumption gives

2

M(z) = EI% =Ryz+ M4+ Plz—c)' + Hy, (2.1)
where (z—c)' denotes a singularity (discontinuity)
function (Nash 1977) and all symbols are defined in
table 1. Equation (2.1) is a linear second-order non-
homogeneous ordinary differential equation (ODE), the
general solution of which (assuming constant flexural
rigidity (ETI)) is given as (Boyce & DiPrima 2001)

n=1 for 0<z<c,
n=2 for c<z<1L,
(2.2)

y, = Ce+Cle ™™y qr+ b,,{
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where

k=/HJ/EL (2.3)

If H<0 (i.e. k<0), which is representative of a
compressive axial force, equation (2.2) can be written
in terms of sin(kz) and cos(kz). On the other hand, if
H>0 (k>0), then H is an axial tension and equation
(2.2) can be written as

yn = Apcosh(kz) + B,sinh(kz) + a,z +b,,  (2.4)

where

A,=(C,+C}) and B,=(C,—C}). (2.5)

If k=0, however, equation (2.2) collapses; nonetheless,
when k—0, i.e. k is infinitesimal, approximation of
equation (2.4) in terms of the first three terms of its
Taylor series is the same as the solution to a Euler—
Bernoulli beam in the absence of any axial loading (i.e.
y, = P(42° —3La) /ASEI).

Differentiating equation (2.4) twice gives

d2
== I = K[A,cosh(kz) + B,sinh(kz)].  (2.6)
x
Static equilibrium suggests
Ry + Rp=P. (2.7)

Considering the case of a central concentrated load, due
to symmetry and continuity and smoothness (i.e.
elastic deformation) conditions,

yp(z) = yi(L—z) and yy(z) = yi(L—2). (28)
Also due to symmetry, equation (2.7) becomes
P

2.1. A fixed guided beam under simultaneous
axial tension and a centre transverse load

For this case (figure 3a), the boundary conditions are

$3n(0) =0, 31(0)=0, yp(L)=0 and yy(L)=0.

(2.10)
Equations (2.4), (2.6), (2.8) (for z=L/2) and (2.9),
regarding the conditions in equation (2.10) give the
solution for a clamped axially guided beam, under

simultaneous axial tension (H) and a central transverse
load (P) as

P L
Y =g { —tanh(kz) [cosh(kz) — 1]

+sinh(kz) —kx}, (2.11)

where k is defined by equation (2.3). Equation (2.8)

completes the solution given by equation (2.11), which
gives the maximum deflection in the beam as

L P
Ymax = Y1 <§) = W [tanh(kL/4) - kL/4] (212)

J. R. Soc. Interface (2009)

2.2. A pinned—pinned beam subjected to
stmultaneous axial tension and a centre
transverse load

For this case, the boundary conditions, as are seen in
figure 3b, are

1 (0) =0, p(L) =0 and yi(L)=0.

(2.13)

y1(0) =0,

Equations (2.4), (2.6), (2.8) (for x=L/2) and (2.9),
regarding equation (2.13) give the solution for a pinned—
pinned beam under simultaneous axial tension (H) and
a central transverse load (P) as

sinh(kz)
—k
cosh (k) "”] ’

P
©2FEIP

" (2.14)

again kis defined by equation (2.3), and the solution in
completed regarding equation (2.8). Equation (2.14)
easily gives the maximum deflection in the beam as

L P L L
Ymax = Y1 (§> Yo [tanh (k§> _kg}- (2.15)

Equations (2.11) and (2.14) imply the proportionality
of deflection (y) with transverse load (P). There are
cases, however, in which the ends of the beam are
axially fixed and then the transverse load is applied
(e.g. Kirschner wire in external circular fixators), where
the tension in the beam will change after transverse
loading. Section 3 addresses this problem.

3. A PRETENSIONED BEAM AXTALLY
CONSTRAINED AT BOTH ENDS

Up to this point, the formulations were based on pure
bending and total disregard for any elongation pre-
dicted by the solution to the deformed shape as given by
equations (2.2), (2.4), (2.11) and (2.14), when applied
to the entire beam span. Therefore, for inclusion of the
elongation into the formulation, the assumption is
made that the beam is elongated by the sole action of
the axial tension, and undergoes a pure bending due to
the bending moment along the beam. Thus, the length
of the curve representing the deformed shape of the
beam should be equal to the length of the beam after
elongation due to axial tension.

In figure 2b, forces in the wire in the directions
parallel and normal to the tangent to its deformed
shape are

T=Hcosf+ Rysiné,
V=Hsinf— Ry cos¥b,

(3.1a)
(3.10)

where 6 is the angle of deflection at axial position z.

If the normal stress is named o, assuming linear
elasticity for the material behaviour together with
equation (3.1a) give

Lo T H R
S—E—EA—EACOS EASIH,

where EA is the tensile rigidity of the beam and is
assumed to be constant.

(3.2)


http://rsif.royalsocietypublishing.org/

Interface

OF
THE ROYAL

JOURNAL
SOCIETY

Interface

OoF
THE ROYAL

JOURNAL
SOCIETY

Interface

OF
THE ROYAL

JOURNAL
SOCIETY

Downloaded from rsif.royalsocietypublishing.org

246  Analytical modelling of pretensioned K-wires A. R. Zamani and S. O. Oyadiji

Figure 1. Full-ring Ilizarov frame applied for lengthening of tibia.

Definition of normal strain is

d(AL)

e(s) = 45 (3.3)

where ds is the differential element of the length of the
curve of the deformed shape and AL is the elongation
with respect to the horizontal distance between the
supports (which is called L).

Equations (3.2) and (3.3) give

H
d(AL) = (ﬂ cos § + %sin 0) ds. (3.4)

By definition

dz =cosfds  and dy = sin 0 ds. (3.5)
Substituting equation (3.5) into equation (3.4) gives
H R,

Integration along the beam span (between the sup-
ports) gives

AL L L
J d(AL) =J £d$+J &dy.

0 o FA o FA (3.7)

J. R. Soc. Interface (2009)

Mg

Figure 2. (a) A beam deformed under the action of axial tension
(H) and a concentrated transverse load (P). (b)) Components of
forces acting at a cross section of the deformed beam, parallel
and normal to the tangent to the deformed beam.

l«——T

—>»H

@ /
%

Figure 3. A fixed axially guided beam under simultaneous
action of (a) an axial tension (H) and (b) a centre transverse
load (P).
Equation (3.7) means
H Ry
AL =—L+—[y(L)—y(0)].
L T ) —y(0)]

For a straight beam, the boundary conditions include
y(L)=19(0)=0, hence equation (3.8) becomes

(3.8)

H
AL=—-L. 3.9
A (3.9)
Equation (3.5) gives
ds =1/1+¢y?da. (3.10)

Assuming small deflections, % is sufficiently small to
allow equation (3.10) be approximated as
1
ds=1 +§y'2. (3.11)
Integrating both sides of equation (3.11) along the
beam span gives

L

1
L’=L+—J y'? dz,
2 Jo

(3.12)

where L' represents the total length of the curve of the
deformed shape of the beam.
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Equation (3.12) can be written as

1 L
ALthiﬁzihy”dm

(3.13)

For a pretensioned beam, it is preferable to base the
calculation on the length of the beam after application
of the pretension (namely L), because it is simply the
distance between the supports. Now, if the pretension
is F, the length of the beam prior to pretensioning
is L_; and elongation due to pretensioning is e,

FL_,
=L—L_ = . 3.14
€o 1 A ( )
Equation (3.14) gives
EA
Equations (3.14) and (3.15) give
FL
“TEA+F (3.16)

If ultimate (final) tension and total elongation after
both pretensioning and transverse loading are rep-
resented by H and e, respectively, then

HL_,
EA

e=¢ey+AL= (3.17)

Substitution of L_; from equation (3.15) into equation
(3.17) gives

_ HL
C BA+F

Substituting AL, eq and e from equations (3.13), (3.16)
and (3.18), respectively, into equation (3.17) gives

e (3.18)

H=F+

EA+F EA+F [t
—+AL=F+—+J y? da.

2L 2L 0

(3.19)

Equation (3.19) is the key to the solutions for a
pretensioned beam. It states the relationship between
change in length (AL) of the beam and the tension in the
beam. Therefore, it can be used to estimate the loss in
the tension due to slippage of the beam at the supports
(e.g. from under the clamps), as well as gain in tension
due to transverse loading. In §§3.1 and 3.2, attempt is
made to solve equation (3.19) for two specific cases of
pretensioned beams under a centre transverse load,
where they are assumed to be long, slender and heavily
loaded, which is not assumed to be the case in §3.3.

It may be argued that the basis for the moment—
deflection ODE given by equation (2.1) is neglecting 3'*
in the exact ODE, which is M(z)= Ely" /(14 y'*)*>.
Thus, it may seem as a contradiction to neglect y'? at
one step and include it for the calculation of elongation
later on. The answer lies in the relative magnitudes of
bending moment and elongation and the integration
involved in the elongation formula as given by equation
(3.13). In fact, a small value (e.g. 10~*) can be a fairly
reasonable elongation, at the same time that it is
justifiably ignored in the moment equation.

J. R. Soc. Interface (2009)
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Figure 4. A pretensioned beam subjected to a centre
transverse load with both ends (a) fully constrained and
(b) pinned-pinned.

3.1. A pretensioned slender beam fully
constrained at both ends with kL>12

Equations (2.11) and (2.14) or equation (2.4) in general
do not accommodate the change in axial reaction at
the supports (or tension throughout the beam) due to
the application or alteration (variation) of the trans-
verse load. However, if now, H is considered to be the
new (final) tension, and the tension applied to the beam
prior to the application of the transverse load (i.e.
pretension) is represented by F, equation (2.11) or
(2.14) still provides the solution. Therefore, to apply
equation (3.19) to a fixed—fixed beam, as illustrated in
figure 4a, equation (2.11) should be differentiated,
which gives

Y = F];k? [—tanh (k%) sinh(kz) + cosh(kz) — 1} ,
(3.20)

where k is defined by equation (2.3).
Substituting equation (3.20) into equation (3.13)
and evaluating the integral gives

1t P \? of L
L 3 L
2 Ztanh( k)Y

><4 ktan (k4>}

Mathematically, for every real number z if 2z>3,
tanh(z) =1; in fact, for z=3, the error does not exceed
half a per cent (Spiegel & Liu 1999). Regarding equation
(3.21) (or (2.3)), it is seen that the slenderer and heavier
loaded (in terms of both axial tension and transverse
load) the beam is, the larger kL becomes which makes
tanh(k(L/4)) increasingly close to 1. Therefore, it can be
argued that kL>12 (i.e. k(L/4)>3) represents such a
case, which means

(3.21)

tanh(k‘é) =1 for kL>12. (3.22)

The latter approximation simply renders equation
(3.21) into

1 (F/dy\? 1
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Substituting AL from equation (3.23) and H from equation
(2.3) into equation (3.19), and then introducing an
auxiliary parameter J, as

EA+F [ P\’
== (ﬁ) : (324)
gives
EIK' — FK’ — JLk +6.J = 0. (3.25)

Equation (3.25) is a polynomial equation of the seventh
degree, which includes only half of all the possible terms. It
can be easily solved numerically and will yield a set of
seven roots. Nevertheless, the sole acceptable solution is
easily distinguishable among the rest, which are complex,
negative or smaller than the value for k£ due to sole
pretension (i.e. \/F/EI). Equation (3.25) yields the value
for k, as defined by equation (2.3) from which the ultimate
tension H is easily computable.

Differentiation of equation (3.20), along with the
(Euler-Bernoulli) beam theory in small deflections gives

2

M= El% = 2—}; [—tanh <k§> cosh(kzr) + sinh(ka:)] .

(3.26)

Maximum moment is, in fact, the reaction moment that
occurs at z=0. Thus, equation (3.26) gives

= M(0) = —Z—Ztanh<k£>.

Using the approximation in equation (3.22) gives

. P
max 2]€

Maximum stress in a tensioned beam can be given by

g = 1y M (4
max A T 2 )
where d is the thickness of the beam (Young & Budynas

2002).
Equations (2.3) and (3.28) render equation (3.29) into

I\ Pd
w=ER () + 22
Tmax (A> T

A slender pretensioned beam may reach the yielding
point under relatively low transverse loads. The pair
of equations (3.25) and (3.30) can be used to deter-
mine the maximum allowable transverse load (for
design purposes).

MHF}X (327)

M (3.28)

(3.29)

(3.30)

3.2. A pretensioned slender beam with both ends
pinned to rigid supports with kL>6

It can be assumed that the plastic hinge will be formed at
the clamps, before the point of application of the load
reaches plastic zone (e.g. due to clamping). Thus, it is
useful to consider the case of a hinged-hinged (or
pinned-pinned) pretensioned beam, as illustrated in
figure 4b. To apply equation (3.19) in this case, equation
(2.14) needs to be differentiated to give

, P | cosh(kz)
= —Z
1T 2RI | cosh (kL)

(3.31)

J. R. Soc. Interface (2009)

Substituting equation (3.31) into equation (3.13) gives
2

1(r , 1 P L
AL == ! = (—)<{— hi k=2
2Joy dr =" (21311#){ 0 tan (kz)
+2kL 3 Liam? k£ .

2 2 2

Using the same argument as was given for equation
(3.22), we can justify the following approximation:

(3.32)

tanh(k§>:1 for kL> 6. (3.33)

Equation (3.33) turns equation (3.32) into
2

AL—IJL 2 et (L (—6 +2kL). (3.34)
2 )Y T4\ 2R S

Substituting AL from equation (3.34) and H from
equation (2.3) into equation (3.19), considering equation
(3.24) gives

EIK' — Fi’ — LJk + 3J = 0. (3.35)

The only unknown in equation (3.35) is of course k,
which can be calculated using a variety of numerical tools.

3.3. A pretensioned beam with both ends fully
restrained with kL<12

Sections 3.1 and 3.2 were based on the approximations
of equations (3.22) and (3.33), which apply to higher
values of kL. For completion of the argument, a
pretensioned fixed—fixed beam with lower values of kL
is considered in this subsection. For such a problem,
Rayleigh’s method proved to be efficient (Budynas
1999). The solution to a beam under a centre transverse
load with no axial loading was multiplied by an
arbitrary constant to give a trial (shape) function for
the deformed shape as

82 3
y= ymaxF <2$— §L)

Strain energies due to bending and tension, respecti-

vely, are .
EI
U, = J — " dz
0 2

(3.36)

(3.37a)

and

L
U, = J Ey’z dz. (3.37b)
0 2
Owing to the fixed ends boundary condition, if Wy is
the work done by axial force H, Wy=0. Therefore, if
Wpis the work done by transverse load P and Wis the
total work done by external forces, then

1
W= WP = §Pyma)c' (338)

Equation (3.36) can be used to calculate y” to substitute
in equation (3.36). Applying external work-strain
energy equation (i.e. W=U, where U=U,+U;) to
equations (3.37a), (3.37b) and (3.38) yields an equation
with two unknowns, namely ¥,.« and H. Another
equation can be obtained through differentiating
equation (3.36) to give ¢ to substitute into equation
(3.19). Eliminating H between the couple of equations
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just described gives

57.6(EA + F) Yy + 8(120EI + 3L°F)yy. —5PL° = 0.

(3.39)

Ordinarily, the solution by Rayleigh’s method is believed
to be completed when the arbitrary coefficient (here
Ymax) 1 found, and the other unknown (here H) can be
calculated using the obtained value for ¢, (Young &
Budynas 2002). However, knowing that the exact
deformed shape is given by equation (2.11), where H is
the sole unknown, justifies deriving an independent
equation for H the same way that equation (3.39) was
derived, which gives

ASLYH® + 48 L% (SOEI — L F)H* + 3840( EI)
X(20EI — L F)H —[76800( EI)* F

+5(EA + F)L*P*| = 0. (3.40)

Equations (3.39) and (3.40) are third-degree polynomial
equations, the roots of which can be calculated both
analytically and numerically. In the absence of pre-
tensioning (F'=0), equation (3.40) gives the tension
developed in a beam solely due to central transverse
loading. It is seen that generally transverse loading of
an axially restrained beam causes axial reaction at
the supports, the magnitude of which combined with the
geometry of the beam determine whether it should be
taken into account, or can be neglected.

4. FE MODELLING AND ANALYSIS

To validate the results obtained from the analytical
solutions of §3, the FEA technique was employed to
provide an alternative numerical solution. Two types
of FE models were built for a Kirschner wire, using
ABaqus/CAE. The first model was built using beam
elements, to which a circular cross section with a radius
of 0.9 mm was assigned. Each element was 1 mm in
length. The second model was a solid three-dimensional
model using hexahedral elements. The cross section of
the K-wire was divided into 12 elements and along the
longitudinal axis each element was 1 mm long. Both
quadratic and linear element types were used for both
models. However, it was found from the analyses that
the choice of element types did not affect the results for
all analyses owing to the fine meshing of the domain of
the problem.

The FEA was carried out using the ABaqus/Standard
commercially available software in two geometrically
nonlinear steps.

(i) Pretensioning. First the pretension F was applied
to one end of each K-wire, while the other end was
fully constrained. No other boundary condition
was applied to the model at this step.

(ii) Transverse loading. Boundary conditions were
applied to fully fix (encastre) both ends of the
K-wire at their respective positions at the end of
the first step, which matches the boundary
conditions in §§3.1 and 3.3. The transverse load
P was applied at the midpoint of the K-wire at
this step.

J. R. Soc. Interface (2009)

The geometric nonlinearity of the analyses is of
prime importance; linear analyses would yield abnor-
mally large values for transverse deflections as pre-
dicted by the formula for a centrally loaded beam, i.e.
Yy, = PL?/192 EI, in which any effect of tension in the
beam is ignored. The FEA results for transverse
deflections of the K-wire using beam elements were
almost identical to those from analyses employing solid
(hexahedral) elements. However, the results for the
deformed shape of the K-wires or the final tension,
which are discussed in the next section, are based on the
FEA using beam elements.

It should be noted that although a variety of values
are used for Young’s modulus for K-wires including, for
example, E=151 GPa (Hillard et al. 1998), E=193 GPa
(Zhang 2004a,b) and E=197 GPa (Watson et al.
2003a,b), the classic value of E=200 GPa for stainless
steel is preferred and used through the rest of this paper,
for both analytical as well as FE computations. The
other material property used in the FEA is Poisson’s
ratio of ¥=0.3.

5. RESULTS

The slenderness of the pretensioned K-wires as well as
the magnitude of the transverse load to which they are
clinically subjected make them ideal candidates for
application of equation (3.25). Equation (3.35) can be
applied when a plastic hinge is believed to have been
formed at the clamps. The following are some results
and implications of application of slender beam
formulation (as given in §3) to pretensioned K-wires
in Ilizarov devices, which are (in some cases) accom-
panied by results from FEA as described in §4.

5.1. Final tension and range of applicability
of the equations

While application of the former equation should be
confined to the designated range (i.e. kL<12) as seen in
figure 5a, the latter, in fact, turned out to give acceptable
results beyond that scope as can be observed in figure 5b.
Hence, application of equation (3.40) for calculating the
final tension and then using the obtained tension in
equation (2.11) for the deformed shape (rather than
using equation (3.39)), or in equation (2.12) for the
maximum deflection, will enhance both the accuracy and
range of application of this formulation.

Deformed shapes and maximum deflections can be
obtained analytically, once the axial tension is calcu-
lated. Equations (3.25) and (3.40) offer two different
ways for calculation of the axial tension for different
values of kL; the results from both are plotted in
figure 6a,b, which confirm their respective realm of
applicability. Equation (3.40) gives closer results to FEA
in lower pretension and length (i.e. lower kL) as seen in
figure 6a, while equation (3.25) is capable of yielding
slightly closer results to the FEA for a higher kL, as
illustrated in figure 6b. As the transverse load increases
so does H and thus kL, shifting the problem increasingly
away from the scope of applicability of equation (3.40)
and into (towards) those of equations (3.25) and (3.35).
Thus, in figure 6a, the discrepancy between results from
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Figure 5. Comparison of the applicability (suitability) of the solution methods for (a) a relatively low value for kL (solid line,
deformed shape by equations (3.40) and (2.11); dashed line, deformed shape by equations (3.39) and (3.36); F=100 N, P=50 N,
kL=5.7) and (b) a high kL (solid line, deformed shape by equations (3.25) and (2.11); dashed line, deformed shape by equations
(3.40) and (2.11); dotted line, deformed shape by equations (3.39) and (3.36); F=1275N, P=250N, kL=31), where

EI=0.103 Nm2.

equation (3.25) and the other methods is seen to
gradually disappear, while in figure 6b the discrepancy
between results from equation (3.40) and the two
other methods is slight but growing, as the transverse
load increases.

5.2. Calculation of tension loss due to slippage
or ring deformation at the clamps

As mentioned earlier, equation (3.19) can be used to
quantify the changes in beam tension, which are likely
to occur to K-wires in ring fixators due to slippage from
under the fixation bolts or ring deformation. Consider-
ing the fact that for K-wires, in equation (3.19), F can
be ignored relative to FA, means that the change in the
tension can be approximated as

EA

H—F=AT=_—-AL 5.1
5T (5.1)

Hence, for a typical case, if L=180 mm, equation (5.1)
predicts that only a quarter of a millimetre of ring
deformation or wire slippage at each clamp (i.e. AL=
0.5 mm) will result in a reduction of up to AT=850 N in
K-wire tension.

5.3. Deformed shape and dominance of the
tensile effect

Figures 6-8 show excellent agreement between the
results obtained using the mathematical equations and
those from FEA. In figure 7, deformed shapes for a
K-wire at relatively low pretension (490 N) computed
by both nonlinear FEA and by equations (3.25)
and (2.11) are plotted for a range of transverse loads
(0-90 N), in which the deflection-load nonlinearity is
observed. It is also seen that as the transverse load

J. R. Soc. Interface (2009)

grows, the curvature is increasingly concentrated in the
vicinity of the clamps (supports) and the point of
application of the load, leaving the part of the wire in
between closely resembling a straight line. This is due
to the increasingly dominating effect of the tension in
the K-wire versus the bending effect and is also seen in
figure 5b when compared with figure 5a.

5.4. Relation between transverse deflection
and length

The approximation in equation (3.22) can be applied to
equation (2.12), which gives

p L
= (1-kZ).
Ymax Elk3< 4)

Thus, the relationship between transverse deflection of a
K-wire and its length is linear. This means that a given
change in K-wire length will result in a proportional
change in its maximum transverse deflection. In the
same way, equation (3.33) can be used to simplify
equation (2.14) for the pinned-pinned situation. Of
course, in both cases, the caveat for applicability of
respective approximation should be heeded.

(5.2)

5.5. Effect of length on the tension

Using equation (3.25), curves for axial tension are
plotted for different K-wire lengths at relatively low as
well as high pretensions in figure 9, which demonstrate
the small effect that the change in length can have on
the final tension. It is seen that 57 per cent increase
in length (140-220 mm) affects the tension only by
5 per cent. It means that the choice of ring diameter is of
little concern with respect to the tension in the K-wires.
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Figure 6. Tension in a K-wire modelled as a slender beam, for (a) a relatively low pretension (F=490 N) (circles, results from
FEA,; solid line, results from equation (3.40); dashed line, results from equation (3.25); L=100 mm, kL>6.8) and (b) a high
pretension (F=1275 N) (circles, results from FEA; solid line, results from equation (3.25); dashed line, results from equation

(3.40); L=220 mm, kL>24.4).

5.6. Effect of length on the angle of deflection

In figure 10, equation (3.20) was used to plot curves for
maximum slope of deformation for different lengths at
pretension of 1079 N, which again shows the small effect
of the length on the maximum angle of deflection.

5.7. Transverse stiffness

Figure 11 reveals the significance of the length vis-a-vis
lateral stiffness of the K-wire (or beam). In figure 12,
curves for lateral stiffness of a 220 mm K-wire are plotted
at different pretensions; the effect of pretension on
transverse deflections can also be seen in figure 8. It is no
surprise that increasing the pretension raises the lateral
stiffness. In both figures 11 and 12, the initial stiffness
(at P=0) is due to pretensioning, which is important
in fixator stability especially in the case of shock loads.

J. R. Soc. Interface (2009)

5.8. Independence of maximum stress
from length

Equation (3.30) shows that the maximum stress (and
therefore the yield stress) in a slender beam with kL >12
is independent of its length; thus, each of the curves in
figure 13 in which maximum stress curves are plotted
using equation (3.30) for different pretensions are
applicable to the range of practical K-wire lengths (i.e.
longer than 120 mm). Figure 13 also demonstrates that at
higher transverse loads, the level of pretension is also
insignificant vis-a-vis the maximum stress. The stress
contours from a nonlinear three-dimensional FEA | using a
fine mesh of quadratic hexahedral elements, is illustrated
in figure 14, which graphically demonstrates the concen-
tration of high stress levels in a small proximity of the
clamps (supports) and point of application of the load.
It also confirms the significance of equation (3.30).
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Figure 7. Deformed shapes for a K-wire modelled as a fixed—fixed cylindrical slender beam with 1.8 mm diameter, at a relatively
low pretension (F=490 N) by (a) nonlinear FEAs and (b) equations (3.25) and (2.11).
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Figure 8. Maximum deflections for different pretensions obtained from both nonlinear FEA (circles, F=490 N; squares, F=883 N;
diamonds, F=1079 N; triangles, F=1275 N) and by equations (3.25) and (2.12) (solid line F=490 N; dashed line, F=883 N; dotted

line, F=1079 N; dot-dashed line, F=1275 N); L=180 mm.

6. DISCUSSION

The clinically and experimentally established non-
linearity of the axial stiffness of Ilizarov fixators
(Kummer 1992; Podolsky & Chao 1993; Bronson
et al. 1998) means that the existing formulations for a
beam under simultaneous axial and transverse loading

J. R. Soc. Interface (2009)

(Budynas 1999; Renton 1999; Young & Budynas 2002)
are not applicable. Plastic hinge is believed to have
been formed at the clamps due to the fact that
clamping may contribute to yielding (Watson et al.
2003a,b). However, Renard et al. (2005) have reported
no plastic deformation under dynamic loading with
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Figure 9. Final tension in a K-wire modelled as a slender beam as given by equation (3.25) for different beam lengths for
(a) a relatively low pretension (F'=490 N) and (b) for a high pretension (F=1275 N).
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Figure 10. Maximum angles of deflection for different lengths of a K-wire pretensioned by 1079 N.

a transverse load of 200 N, at 90 and 130 kgf pre-
tensions, which emphasizes the necessity of an elastic
mathematical solution. They also reported meaningful
ring deformations that were previously ignored (Hillard
et al. 1998).

Equation (5.1) can be used to quantify the effect of
such a deformation on the K-wire behaviour. If the
K-wire is to be deformed plastically prior to transverse

J. R. Soc. Interface (2009)

loading due to clamping, as reported by Watson et al.
(2003a), equation (5.1) can formulate the effect that
such a deformation, which they said resembled the
squeezing out of ‘toothpaste from a tube’, may have on
reduction of the pretension.

The deflection—load nonlinearity is most evidently
illustrated in figure 8, in which the transverse maxi-
mum deflection versus load curves are plotted by both
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Figure 11. Transverse stiffness (as secant modulus) versus transverse load for different lengths of a K-wire using equations (3.25)
and (2.12), F=1275 N. Circles, L=140 mm; squares, L= 160 mm; diamonds, L= 180 mm; triangles, L= 200 mm; filled circles,

L=220 mm.
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Figure 12. Transverse stiffness (as secant modulus) versus load curves for a K-wire modelled as a pretensioned slender beam, with
both ends fully constrained (L=220 mm). Filled circles, F=490 N; diamonds, F=883 N; squares, F=1079 N; circles, F=1275 N.

nonlinear FEA and the pair of equations (3.25) and
(3.12) for a number of (clinically applicable) preten-
sions. Given that linear elasticity has been assumed for
material behaviour in all the formulations and analyses,
this observed deflection—load nonlinearity is obviously
geometric (Zhang 2004 a,b). This is due to the fact that
k is an implicit function of P, as defined by equation
(3.25) (or (3.35)), which in turn affects the deformed
shape and maximum deflection as formulated by
equations (2.11) and (2.12) (or (2.14) and (2.15)). In
figure 8, as the pretension level grows, the deflection
versus load curve tends to become more linear; thus, the
nonlinearity decreases with the increase of pretension.
Therefore, it can be said that the pretension in fact has
a linearizing effect on deflection—load curves. The same
phenomenon can also be observed in the reported
results of previous experimental (Watson et al. 2000),

J. R. Soc. Interface (2009)

computational (Hillard et al. 1998; Zhang 2004b) and
theoretical (Zamani & Oyadiji 2008) studies. To put it
simply, the source of nonlinearity lies in the change in
wire tension rather than the tension itself (including
pretension), and the higher the level of the tension is,
the less affected it will be by a given change in the
magnitude of transverse load.

The FE method is a powerful numerical tool for
problems involving complex geometries. The ABaQUS
FEA software package is an industry standard FEA
code for nonlinear analyses. Therefore, it can be relied
upon to yield very accurate numerical results for the
simple geometry of the K-wires, given the fine
meshing involved as described in §4. The fact that
results from linear and quadratic elements produced
the same results and also that the results for deflection
analyses using beam elements showed no significant
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Figure 13. Maximum stress versus transverse load at different pretensions (F) for a K-wire modelled as a pretensioned fixed—fixed
slender beam. Circles, F'=490 N; squares, F'=883 N; filled circles, F=1079 N; triangles, F=1275 N.
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Figure 14. Stress contours from an elastic FEA. Note the high local stress levels in the small vicinity of the supports.

difference from those based on using solid elements
analyses also contributed to the numerical accuracy
and reliability of the FE results. Thus, the FEA in the
present study can be used to verify the analytical
solutions as given in §3.

Watson et al. (2000, 2003b) have published the
results from their experimental work for displacements
of a K-wire (D=180 mm and d=1.8 mm) loaded
perpendicular to its longitudinal axis at its midpoint,
under different pretensions, in two graphs (fig. 5 of
Watson et al. 2000, 2003b). The results in figure 8 of
this paper, which are based on the analytical solutions,
are comparable with the results shown in either of
those graphs. But, of course, figure 8 already shows the
very close correlation between the analytical and
FEA results.

7. CONCLUSIONS

This study was aimed at providing a solution to the
problem of finding final tension and deflection of a
pretensioned K-wire subject to a transverse load, which

J. R. Soc. Interface (2009)

can account for changes in the tension due to application
and alteration of the transverse load. Solutions were
provided in the form of polynomial equations, which yield
the final tension for a pretensioned K-wire after central
transverse loading. It was shown that for a long slender
beam, tension can be the predominant effect throughout
the beam, especially when pretensioned and/or heavily
loaded. Nonetheless, a small transverse load can result in
much higher stress levels in the (immediate) vicinity of
the supports due to bending, which is predicted by
equation (3.30). The equations developed are also capable
of providing explicit solutions to the outstanding problem
of pretensioned beams in general.

The mathematical solutions were applied to specific
cases of K-wires in orthopaedics, the results of which
were validated through FEAs. Regarding the mechanical
behaviour of K-wires, plastic deformation (Hillard et al.
1998; Watson et al. 2003a,b) deserves due consideration,
given stress levels in figure 13; nonetheless, more recent
research reported no evidence on plastic deformation
(Renard et al. 2005). Ring deformation as well as slippage
from under the fixation bolts can also affect the tension


http://rsif.royalsocietypublishing.org/

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Interface

OF

THE ROYAL

JOURNAL
SOCIETY

Downloaded from rsif.royalsocietypublishing.org

256  Analytical modelling of pretensioned K-wires

A. R. Zamani and S. O. Oyadiji

level in the K-wire significantly, as formulated by
equation (5.1). The mathematical solutions given enable
the parametric study of different variables involved in the
application of tensioned beams and wires.
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